翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

HII region : ウィキペディア英語版
H II region

An H II region is a large, low-density cloud of partially ionized gas in which star formation has recently taken place. The short-lived blue stars forged in these regions emit copious amounts of ultraviolet light that ionize the surrounding gas. H II regions—sometimes several hundred light-years across—are often associated with giant molecular clouds. The first known H II region was the Orion Nebula, which was discovered in 1610 by Nicolas-Claude Fabri de Peiresc.
H II regions are named for the large amount of ionised atomic hydrogen they contain, referred to as H II, pronounced H-two by astronomers (an H I region being neutral atomic hydrogen, and H2 being molecular hydrogen). Such regions have extremely diverse shapes, because the distribution of the stars and gas inside them is irregular. They often appear clumpy and filamentary, sometimes showing bizarre shapes such as the Horsehead Nebula. H II regions may give birth to thousands of stars over a period of several million years. In the end, supernova explosions and strong stellar winds from the most massive stars in the resulting star cluster will disperse the gases of the H II region, leaving behind a cluster of birthed stars such as the Pleiades.
H II regions can be seen to considerable distances in the universe, and the study of extragalactic H II regions is important in determining the distance and chemical composition of other galaxies. Spiral and irregular galaxies contain many H II regions, while elliptical galaxies are almost devoid of them. In the spiral galaxies, including the Milky Way, H II regions are concentrated in the spiral arms, while in the irregular galaxies they are distributed chaotically. Some galaxies contain huge H II regions, which may contain tens of thousands of stars. Examples include the 30 Doradus region in the Large Magellanic Cloud and NGC 604 in the Triangulum Galaxy.
== Observations ==

A few of the brightest H II regions are visible to the naked eye. However, none seem to have been noticed before the advent of the telescope in the early 17th century. Even Galileo did not notice the Orion Nebula when he first observed the star cluster within it (previously cataloged as a single star, θ Orionis, by Johann Bayer). The French observer Nicolas-Claude Fabri de Peiresc is credited with the discovery of the Orion Nebula in 1610. Since that early observation large numbers of H II regions have been discovered in the Milky Way and other galaxies.〔
William Herschel observed the Orion Nebula in 1774, and described it later as "an unformed fiery mist, the chaotic material of future suns". Confirmation of this hypothesis had to wait another hundred years, when William Huggins together with his wife Mary Huggins turned his spectroscope on various nebulae. Some, such as the Andromeda Nebula, had spectra quite similar to those of stars, but turned out to be galaxies consisting of hundreds of millions of individual stars. Others looked very different. Rather than a strong continuum with absorption lines superimposed, the Orion Nebula and other similar objects showed only a small number of emission lines. In planetary nebulae, the brightest of these spectral lines was at a wavelength of 500.7 nanometres, which did not correspond with a line of any known chemical element. At first it was hypothesized that the line might be due to an unknown element, which was named Nebulium—a similar idea had led to the discovery of helium through analysis of the Sun's spectrum in 1868. However, while helium was isolated on earth soon after its discovery in the spectrum of the sun, Nebulium was not. In the early 20th century, Henry Norris Russell proposed that rather than being a new element, the line at 500.7 nm was due to a familiar element in unfamiliar conditions.
Interstellar matter, considered dense in an astronomical context, is at high vacuum by laboratory standards. Physicists showed in the 1920s that in gas at extremely low density, electrons can populate excited metastable energy levels in atoms and ions, which at higher densities are rapidly de-excited by collisions. Electron transitions from these levels in doubly ionized oxygen give rise to the 500.7 nm line.〔 These spectral lines, which can only be seen in very low density gases, are called forbidden lines. Spectroscopic observations thus showed that planetary nebulae consisted largely of extremely rarefied ionised oxygen gas (OIII).
In HII regions, however, the dominant spectral line has a wavelength of 656.3 nm. This is the well-known H-alpha line emitted by atomic hydrogen. Specifically, a photon of this wavelength is emitted when the electron of a hydrogen atom changes its excitation state from n=3 to n=2. Such state-changes happen very frequently when an electron is captured by an ionised hydrogen atom (a proton), and the electron cascades down from some higher excitation state to n=1. Thus, it was concluded that HII regions consist of a mix of electrons and ionised hydrogen that are constantly recombining into hydrogen atoms.
During the 20th century, observations showed that H II regions often contained hot, bright stars.〔 These stars are many times more massive than the Sun, and are the shortest-lived stars, with total lifetimes of only a few million years (compared to stars like the Sun, which live for several billion years). Therefore, it was surmised that H II regions must be regions in which new stars were forming.〔 Over a period of several million years, a cluster of stars will form in an H II region, before radiation pressure from the hot young stars causes the nebula to disperse.〔 The Pleiades are an example of a cluster which has 'boiled away' the H II region from which it was formed. Only a trace of reflection nebulosity remains.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「H II region」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.